Synergistic effect of adding lignin and carbon black in poly(lactic acid)
Thaís Ferreira da Silva; Fernanda Menezes; Larissa Stieven Montagna; Ana Paula Lemes; Fabio Roberto Passador

- Citations
- Citation Indexes: 21
- Usage
- Full Text Views: 674
- Abstract Views: 108
- Captures
- Readers: 34
Abstract
Keywords
References
1 Santos, M. S., Montagna, L. S., Rezende, M. C., & Passador, F. R. (2019). A new use for glassy carbon: development of LDPE/glassy carbon composites for antistatic packaging applications.
2 Mesquita, A. S., Silva, L. G. A., & Miranda, L. F. (2018). Mechanical, thermal and electrical properties of poly(ethylene terephthalate)-PET filled with carbon black. The Minerals.
3 Silva, T. F., Menezes, F., Montagna, L. S., Lemes, A. P., & Passador, F. R. (2019). Preparation and characterization of antistatic packaging for electronic components based on poly(lactic acid)/carbon black composites.
4 Macedo, J. R. N., Santos, D. J., & Santos Rosa, D. (2019). Poly(lactic acid)–thermoplastic starch–cotton composites: starch-compatibilizing effects and composite biodegradability.
5 Silva, L. N., Anjos, E. G. R., Morgado, G. F. M., Marini, J., Backes, E. H., Montagna, L. S., & Passador, F. R. (2019). Development of antistatic packaging of polyamide 6/linear low-density polyethylene blends-based carbon black composites.
6 Al-Saleh, M. H., & Sundararaj, U. (2008). An innovative method to reduce percolation threshold of carbon black immiscible polymer blends.
7 Chen, Y., Yao, J., Xu, M.-K., Jiang, Z.-G., & Zhang, H.-B. (2019). Electrically conductive and flame retardant graphene/brominated polystyrene/maleic anhydride grafted high density polyethylene nanocomposites with satisfactory mechanical properties.
8 Franchetti, S. M. M., & Marconato, J. C. (2006). Polímeros biodegradáveis: uma solução parcial para diminuir a quantidade dos resíduos plásticos.
9 Silva, T. F., Menezes, F., Montagna, L. S., Lemes, A. P., & Passador, F. R. (2019). Effect of lignin as accelerator of the biodegradation process of poly(lactic acid)/lignin composites.
10 Fan, T., Ye, W., Du, B., Zhang, Q., Gong, L., Li, J., & Liu, Q. (2019). Effect of segment structures on the hydrolytic degradation behaviors of totally degradable poly(L-lactic acid)-based copolymers.
11 Iovino, R., Zullo, R., Rao, M. A., Cassar, L., & Gianfreda, L. (2008). Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions.
12 Song, R., Murphy, M., Li, C., Ting, K., Soo, C., & Zheng, Z. (2018). Current development of biodegradable polymeric materials for biomedical applications.
13 Fechine, G. J. M. (2010). A era dos polímeros biodegradáveis.
14 Rane, A. V., Kanny, K., Mathew, A., Mohan, T. P., & Thomas, S. (2019). Comparative analysis of processing techniques’ effect on the strength of carbon black (n220)-filled poly(lactic acid) composites.
15 Gindl-Altmutter, W., Fürst, C., Mahendran, A., Obersriebnig, M., Emsenhuber, G., Kluge, M., Veigel, S., Keckes, J., & Liebner, F. (2015). Electrically conductive kraft lignin-based carbon filler for polymers.
16 Gordobil, O., Delucis, R., Egüés, I., & Labidi, J. (2015). Kraft lignin as filler in PLA to improve ductility and thermal properties.
17 Rezende, C. A., & Duek, E. A. R. (2005). Blendas de poli (ácido lático-co-ácido glicólico)/ poli (ácido lático): degradação in vitro.
18 American Society for Testing and Materials – ASTM. (2003).
19 American Society for Testing and Materials – ASTM. (2015).
20 Zhao, Y.-Q., Cheung, H.-Y., Lau, K.-T., Xu, C.-L., Zhao, D.-D., & Li, H.-L. (2010). Silkworm silk/poly(lactic acid) biocomposites: dynamic mechanical, thermal and biodegradable properties.
21 Kumar Singla, R., Maiti, S. N., & Ghosh, A. K. (2016). Crystallization, morphological, and mechanical response of poly(lactic acid)/lignin-based biodegradable composites.
22 Mosnáčková, K., Danko, M., Šišková, A., Falco, L. M., Janigová, I., Chmela, Š., Vanovčanová, Z., Omaníková, L., Chodák, I., & Mosnáček, J. (2017). Complex study of the physical properties of a poly(lactic acid)/poly(3-hydroxybutyrate) blend and its carbon black composite during various outdoor and laboratory ageing conditions.
23 Qin, L., Qiu, J., Liu, M., Ding, S., Shao, L., Lü, S., Zhang, G., Zhao, Y., & Fu, X. (2011). Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate).
24 Pereira, R. B., & Morales, A. R. (2014). Estudo do comportamento térmico e mecânico do PLA modificado com aditivo nucleante e modificador de impacto TT.
25 Liu, X., Zou, Y., Cao, G., & Luo, D. (2007). The preparation and properties of biodegradable polyesteramide composites reinforced with nano-CaCO3 and nano-SiO2.
26 Mathew, A. P., Oksman, K., & Sain, M. (2006). The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid.
27 Saeidlou, S., Huneault, M. A., Li, H., & Park, C. B. (2012). Poly(lactic acid) crystallization.
28 Sangha, A. K., Parks, J. M., Standaert, R. F., Ziebell, A., Davis, M., & Smith, J. C. (2012). Radical coupling reactions in lignin synthesis: A density functional theory study.
29 Arruda, L. C., Magaton, M., Bretas, R. E. S., & Ueki, M. M. (2015). Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends.
30 Kanbur, Y., & Kuçukyavuz, Z. (2009). Electrical and mechanical properties of polypropylene/carbon black composites.
31 Ma, P. M., Wang, R. Y., Wang, S. F., Zhang, Y., Zhang, Y. X., & Hristova, D. (2008). Effects of fumed silica on the cr/ystallization behavior and thermal properties of poly(hydroxybutyrate-co-hydroxyvalerate).
32 Bismarck, A., Aranberri-Askargorta, I., Springer, J., Lampke, T., Wielage, B., Stamboulis, A., Shenderovich, I., & Limbach, H.-H. (2002). Surface characterization of flax, hemp and cellulose fibers: surface properties and the water uptake behavior.
33 Litauszki, K., Kovács, Z., Mészáros, L., & Kmetty, A. (2019). Accelerated photodegradation of poly(lactic acid) with weathering test chamber and laser exposure: a comparative stud.
34 Grigull, V. H., Mazur, L. P., Garcia, M. C. F., Schneider, A. L. S., & Pezzin, A. P. T. (2015). Estudo da degradação de blendas de poli(hidroxibutirato-cohidroxivalerato)/poli(l-ácido lático) em diferentes condições ambientais.
35 Garlotta, D. (2001). A literature review of poly(lactic acid).
36 Yu, T., Ren, J., Li, S., Yuan, H., & Li, Y. (2010). Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites.
37 Montagna, L. S., Montanheiro, T. L. A., Borges, A. C., Koga-Ito, C. Y., Lemes, A. P., & Rezende, M. C. (2016). Biodegradation of PHBV/GNS nanocomposites by Penicillium funiculosum.
38 Faria, A. U., & Martins-Franchetti, S. M. (2010). Biodegradação de filmes de polipropileno (PP), poli(3-hidroxibutirato) (PHB) e blenda de PP/PHB por microrganismos das águas do Rio Atibaia.
39 Ohkita, T., & Lee, S.-H. (2006). Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites.
40 Harmaen, A. S., Khalina, A., Azowa, I., Hassan, M. A., Tarmian, A., & Jawaid, M. (2015). Thermal and biodegradation properties of poly(lactic acid)/fertilizer/oil palm fibers blends biocomposites.