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Obstract

This paper presents an alternative method to measure the torsion modulus, G, for samples of polymers. We constructed a 
measurement system with a force sensor (FS) and a rotational movement sensor (RMS) to obtain a relationship between 
force (F) and torsion angle (θ). An expression that could return the value of G was deduced using the deformation energy 
method. This technique is nondestructive and independent of knowing the value of Poisson’s ratio. Samples with different 
diameters of polytetrafluoroethylene (PTFE) were submitted to quasi-static torsion at the same aspect ratio. The aim 
was to present and validate the use of the technique for a known polymer. The approximate value of 350 MPa of the 
torsion modulus G was found for PTFE samples. As the values obtained are within the limits found in the literature, 
the technique can be used to study samples of polymers and other materials.

Keywords: deformation energy, force sensor, polytetrafluoroethylene (PTFE), rotational movement sensor, torsion 
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1. Introduction

In order to predict the behavior of materials when 
subjected to stresses or loads, it is necessary to know their 
characteristics, such as rigidity (elastic modulus). This paper 
uses a specially designed system to determine the torsion 
modulus (G) of polymers. We have chosen the polymer 
polytetrafluoroethylene (PTFE), a well-known fluoropolymer, 
to validate the use of the technique. The properties of this 
polymer make it suitable for use in aerospace applications[1] 
and the biomedical industry, for implants[2-4], making it 
essential to know its elastic properties, such as the torsion 
modulus. In 1946, Renfrew and Lewis[5] was one of the first 
to report a few mechanical parameters of PTFE, followed 
later by Thomas et al.[6], who published its tensile properties 
related to crystallinity. Brown and Parrish[7] investigated the 
tensile behavior of PTFE in a liquid nitrogen environment, 
showing a decrease in strength, and Kletschkowski et al.[8] 
explored the elastic behavior of filled PTFE to develop 
models for seal materials. Rae and Brown[9] found that some 
grades of PTFE are sensitive to strain-rate, temperature, and 
crystallinity under tension.

Dynamic torsion tests can also be used to characterize 
the viscoelastic properties of polymers[10]. Andreozzi et al.[11] 
proposed a new procedure for measuring the shear modulus 
of laminated glass interlayers using a rheometer as a simpler 
and more reliable test than those presently in use. In a 
recent article[12], the authors use a dynamic technique based 
on mechanical spectroscopy knowledge[13] and apply it to 
biomaterials, determining the torsion modulus. The same 

technique can be used to measure G in polymeric materials. 
However, this technique showed some limitations regarding 
the sample sizes, which were limited, and difficulty in 
obtaining relaxation curves of ductile polymer materials. 
Therefore, we developed an apparatus that is fixed to the 
same torsion pendulum used in the dynamic measure[12] and 
which will be used as a means to overcome the limitations 
related to the dynamic method. In this work, we intend to 
introduce and apply a quasi-static technique to measure 
the shear modulus (G) of PTFE and, further on, of other 
polymers and materials. By using a force sensor (FS) attached 
to a coordinated table which is driven by Stepper motor, 
and a rotational motion sensor (RMS) capable of recording 
the torsion angle (θ), we obtain the curve force (F) versus 
torsion angle (θ). Circular cross-sections of PTFE samples 
with different diameters are subject to a quasi-static torsion 
and a linear adjustment from their curves provides a way 
to calculate the value of the torsion modulus. Although 
this technique uses concepts from the classical torsion test 
to determine the shear behavior of a material[14-16], in this 
work we present a new approach for obtain G, which uses 
concepts such as torsion deformation energy and force 
work, with equation deduction especially for the system 
and measure. Also, the technique is consider nondestructive 
and different from the traditional quasi-static tensile test, 
where the information on the Poisson coefficient is needed 
to obtain G, this technique does not require knowledge of 
Poisson’s ratio, making it of great practical interest.
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 2. Materials and Methods

Cylindrical bars extruded of pure, commercial PTFE 
supplied by DuPont with dimensions of 10.85x500 mm, 
8.00x500 mm, 6.50x500 mm, and 5.00x500 mm were 
used. Theses bars with different diameters d were cut 
and fixed in the measuring system under the same ratio 
L/d = 10.64, where L is effective length and then subjected 
to quasi-static torsion. One end of the sample was fixed to 
the pendulum with screws while the other was attached to 
a static three-jaw chuck, which allows adjustment of the 
clamping for different sample diameters (Figure 1). A detailed 
description of the system and measures is provided in 
section 2.4. For scanning electron microscopy (SEM) and 
differential scanning calorimetry (DSC) measurements, the 
samples were cleaned in the ultrasonic bath for 600s at 50W. 
These samples were only sawed and did not undergo any 
sanding or polishing process to avoid adhesion of abrasive 
grains or other impurities to the material, which could lead 
to misinterpretations of the results.

PTFE is a semi-crystalline fluoropolymer used as 
a high-performance material, with a low coefficient of 
friction, chemical inertia, and thermal stability properties. 
The carbon-fluorine binding force, together with the 
protection of the fluorine atoms surrounding its carbon chain, 
is responsible for these properties[17]. The material exhibits 
four phases dependent on temperature and pressure, with the 
configuration of orthorhombic crystal as the only one not 
reached at atmospheric pressure[18,19]. Its high melt viscosity 
(1011 Pa at 380°C) prevents pieces of this material being 
obtained by traditional methods of injection and molding, 
with extrusion being one of the processes available for its 
production[20-22]. Depending on the processing route (thermal 
history) used to obtain PTFE, the crystalline percentage of 
the material can be changed, which has a known influence 
on its mechanical properties[9,18,23]. Thus, it is essential to 
estimate the degree of crystallinity of the material when 
subjected to mechanical testing. Several methods to estimate 
crystallinity can be found in the literature[1,24-27], of which 
DSC was used in our work.

2.1 Density, ρ
The PTFE’s density was obtained through the Archimedes 

principle[28], a method based on volume displacement with 
liquid (vF − v0) and sample mass (m), according to Equation 1:

f 0

m
v v

ρ =
−

 (1)

A 10.0 ml graduated glass cylinder was used with 
5.0 ml of deionized water. The mass of the polymer was 
measured through an analytical balance in an air-conditioned 
environment at 25°C. By inserting a piece of extruded PTFE 
into the graduated cylinder and obtaining the volume of the 
displaced liquid, the density of the polymer is calculated 
by Equation 1. Three samples of each extruded bar were 
measured, and their mean density value is ρ = 2156.3 kg m−3.

2.2 Scanning electron microscopy

SEM was performed on a Zeiss, model EVO LS1. Samples 
were coated with gold for visualization. Measurements were 
made in high vacuum (10−3 Pa) with magnifications of 250x, 
1000x, and 2000x of the internal region in longitudinal 
section of the PTFE bar. The aim was to visualize defects 
in the extrusion process, such as bubbles and cracks, which 
could compromise test results.

2.3 Differential scanning calorimetry

The DSC curve was obtained in the Mettler-Toledo 
model DSC 1 Staree System, using closed 40 µl crucibles 
with a hole in the cover. The sample mass was 14.46 mg, 
heated from 25°C to 350°C at a ratio of 10°C min−1 under 
dry air atmosphere with 50 ml min−1 flow.

The crystalline percentage can be estimated by calculating 
the ratio of the heat of fusion (∆HF) obtained from the DSC 
measurements and the heat of fusion of a theoretical 100% 
crystalline sample (∆H0

F), Equation 2:

Figure 1. (a) System for fixing samples: (1) shaft of the pendulum with fixing screws; (2) PTFE sample; and (3) three-jaw chuck. 
(b) Schematic drawing of the measuring system: (c) schematic drawing of the sample showing the effective length L and the oriented axis.
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A wide range of values for the PTFE heat of fusion can 
be found in the literature, as shown by Lehnert et al.[27]. 
To calculate the crystalline percentage of our material, we 
use a mean of these values (80 J g−1), as did Rae and Brown[9] 
and Jordan et al.[1] Also, the DSC was used to determine 
the melt temperature (Tm) and the PTFE phase transitions 
at ambient pressure.

2.4 Measurement of torsion modulus G

The system used to apply the torque (Mt) on one of 
the pendulum arms is shown in Figure 2. It consists of a 
coordinated table attached to a plate, which is fixed in relation 
to the structure of the torsion pendulum (Figure 2a and b). 
The sample is attached to the system as described in section 2, 
with the system previously positioned at the desired effective 
length L. Using an inextensible wire attached at one end to 
the pendulum upper rod and the other to the FS (FS-PASCO 
CI6537, 0.0305 newtons of resolution), it is possible to 
apply and measure the force. We used a 12V Stepper motor 
(60 Hz, 4 W, 3.3 RPM) to move the coordinated table in 
the two required directions: one for approximation and 
the other to draw it away from the pendulum (Figure 2d), 
twisting the sample at a rate of 3 x 10-4 s-1 (estimated value 
of (θ* x 0.222)/120 s). The pendulum was placed at an 
initial position perpendicular to the sensor set to be pulled 
(Figure 2a and b). Using an RMS (RMS-PASCO CI6538, 
1º and 0.25º of resolution ± 0.09 degree accuracy) capable 
of recording the torsion angle of the axis (θ) that holds 
one end of the sample, the force curves (FS) versus torsion 

angle (θ) are obtained. The two sensors were connected at 
an interface to a computer. Using the software PASCO, the 
experimental points for F (N) and θ (rad) were obtained 
simultaneously in real time. We can thus adjust the straight 
line and obtain the slope of B, because the points have 
linear behavior in a region where the material shows elastic 
behavior. The slope B has the units N/rad. A correction must 
be made in relation to the angle measured in the rotation 
sensor (θ*) and the torsion angle in the sample (θ), due to 
the difference in diameters between the pendulum’s metal 
rod (which transmits motion) and the RMS, as shown in 
Figure 2c. The ratio (θ/θ*) of these angles is obtained 
experimentally and is 0.222 ± 0.001. This means that the 
angle measured in the RMS is greater than that of the 
torsion in the sample studied. Thus, slope B should also be 
calculated as B*/0.222. All samples were twisted at room 
temperature up to approximately 0.16 rad (9º) on the RMS, 
which equates as 0.0355 rad (2º) in the PTFE samples by 
the ratio correction. Three measurements were made for 
each sample diameter, with the RMS configuration in high 
resolution (division/revolution = 1440) and the sample rate 
of 1 Hz and the FS configuration in high resolution (100x).

To carry out these measurements we had to obtain a 
calibration factor, f, because the value of measured force 
(FMEASURED = FS) in the FS is different from that of applied 
force (FAPPLIED). Factor f can be obtained experimentally by 
applying known forces (FAPPLIED) and measuring the forces 
with the FS (FMEASURED). For this, we used known masses: 
0.020, 0.050, 0.100, 0.200, 0.500, and 1.00 kg. They were 
fixed at one end of an inextensible cord passing over a pulley 
at the other end and attached to the FS. The local gravity 
is g = 9.79 ± 0.01 m s-2.

Figure 2. (a) System for measuring G: (1) interface (PASCO: CI7650-750); (2) force sensor (FS-PASCO: CI6537); (3) motor for moving 
coordinated table; (4) torsion pendulum structure for coordinated table attachment; (5) pendulum’s metal rod; (6) shaft pendulum attached 
to the sample; (7) rotational movement sensor (RMS-PASCO: CI6538); (8) coordinated table; and (9) torsion pendulum. (b) Photo of the 
coordinated table attached to a plate, fixed in relation to the structure of the torsion pendulum. (c) Photo demonstrating the difference in 
diameters to calculate the ratio θ/θ*. (d) Schematic drawing showing some of the parameters used in section 2.5.
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2.5 Deformation energy method for obtaining G

Consider an elastic structure subjected to applied loads 
and deformed elastically. In this deformation process, the 
principle of energy conservation[29] applies, expressed as:

EW Q E+ = ∆  (3)

WE is the work carried out by applied external forces, 
Q is the heat exchanged by the structure with its surrounding 
area and ΔE is the variation in the associated deformation 
energies of the structure: kinetic energy of the particles (K) 
and internal energy (U). Considering that the increase in 
these loads is gradual (rate of 3 x 10-4 s-1) and that a state of 
equilibrium is maintained in this process, then the variation 
of kinetic energy is zero, because there is no movement of 
either the amorphous or crystalline regions that occurs during 
plastic deformation[30]. Although there is a slight movement 
of adjacent molecules, the variation is so small that it can 
be neglected. We assume the hypothesis that there is only 
elastic deformation due to the small deformation at which 
the test is performed (0.0355 rad). Thus, ΔE is due only 
to the variation in internal energy, U. In these conditions, 
Equation 1 is reduced to:

EW U= ∆  (4)

The work, which can be considered as energy stored in 
the structure due to torsion in an element of infinitesimal 
volume[29,31], is represented by strain and stress tensors, σij 
and eij, respectively. The energy, dU, stored in this element 
when the deformation has reached its final value eij is:

eij

ij ij
0

dU deσ= ∫  (5)

By integrating the entire volume, V, of the structure, 
we obtain the total internal energy, U, due to torsion, which 
is expressed as:

( )
eij

ij ij
0

U de dVσ= ∫ ∫  (6)

In cases where the elastic structure has linear behavior, 
it is isotropic, and it is subjected to pure torsion (Figure 1c). 
Using Hooke’s law[29], it is established that:

( )2 2
12 13

1U dV
2G

σ σ= +∫  (7)

where G is the modulus of elasticity of torsion.
For measuring G, a prismatic bar with a uniform circular 

cross-section of area A and length L is subjected to applied 
torque (Mt) by an FS attached to a coordinated table at one end 
and at the other a torsion pendulum (see Figure 2a, b, and d).

With regard to Mechanics of materials[31], it is known 
that the stress state on an internal point of a polymer, xi, 
under the experimental conditions shown in Figure 1c, is 
expressed as:

t 3
12

M x
J

σ =  (8)

t 2
13

M x
J

σ =  (9)

The polar moment of the cross-sectional area is represented 
by J, which is given by 

4dJ
32
π

= . Substituting these stress 

components into Equation 7 yields the internal strain energy 
in the structure for this specific application:

2
tM LU

2GJ
=  (10)

The torque of torsion is:

cost SM F a θ=  (11)

The external work conducted by Mt is:

E t
1W M
2

θ=  (12)

Equating Equations 10 and 12, and for a very small θ, 
we find:

S
G JF B
L a

θ θ= =  (13)

If we replace the values of the polar moment of the 
cross-sectional area, J, and use B and the calibration factor 
of the FS, f, we obtain an equation for the calculation of G:

B L aG f
J

=  (14)

Knowing the values of the polar moment of the 
cross-sectional area of sample J, the slope obtained in 
the torsion test B, the calibration factor of the FS f, the 
pendulum arm length a, and the effective length at which 
the sample is positioned L, we can calculate the torsion 
modulus G by using Equation 14. In this work, to determine 
B*, the correlation coefficient r was used to best fit the 
line to the experimental points (the adjustment is better 
when r is closer to 1). The error associated with B* refers 
to the standard deviation value. We used the error theory 
to calculate the error propagation relative to the magnitude 
G, where the standard deviation uncertainty in G is, in the 
first approximation, given by:

² ² ² ² ²2 2 2 2 2 2
G B L a J f

G G G G G
B L a J f

σ σ σ σ σ σ
 ∂ ∂ ∂ ∂ ∂       = + + + +         ∂ ∂ ∂ ∂ ∂         

 (15)

3. Results and Discussions

Figure 3 shows the inner region of the extruded PTFE 
bar in longitudinal section. The marks on the material surface 
are from the saw used to make the sample. No bubbles or 
voids were observed in the internal structure of the material. 
Neither cracks nor microcracks, which may appear due to the 
state of tension or the presence of voids, were seen. These 
types of defects may occur during extrusion, by incorrect 
use of temperature, pressure, or velocity, or the presence of 
impurities[17,32,33]. As the extrusion process is continuous, the 
defects propagate along the entire length of the bar, which 
did not occur in this case.

Figure 4 shows the characteristic DSC curve for pure 
PTFE. At 31.6°C, an endothermic peak indicates the phase 
transition β from hexagonal crystal to pseudo-hexagonal. 
Because the measurement starts at room temperature it 
is not possible to visualize the acute peak of β transition 
at 19°C from triclinic to hexagonal crystal. In addition, 



System to measure torsion modulus of polymers using the deformation energy method

Polímeros, 29(3), e2019031, 2019 5/8

the phase transition γ is not clearly seen and the glass 
transition of the material is very small and could not be 
detected, probably due to the heat flow value established 
for measurement[34]. The wider endothermic peak indicates 
the melting of the material, with Tm= 330.6°C. The heat of 
fusion was 35.5 J g−1 and the crystalline percentage was 
estimated according to Equation 2. These values and that 
of density are given in Table 1.

The density of PTFE in the literature is between 2140.0 
and 2200.0 kg m−3[17,35,36], and 2156.3 kg m−3 was the value 
calculated for our material. Mechanical properties may undergo 
significant changes depending on the degree of crystallinity. 
The reason for this is that it affects the secondary bonds, or 
Van der Waals bonds, between the intermolecular chains. 
For regions of higher crystallinity these chains are closer 
to each other, intensifying the interaction between them by 
means of these bonds. Thus, for a specific polymer with more 
amorphous regions, this interaction will be smaller, and in 
turn there will be changes in the mechanical properties[35]. 
Furthermore, the modulus rises as both the secondary bond 
strength and chain alignment increase.

The value obtained in the calibration curve is 
f = 1.10697 ± 0.00006. Thus, f > 1 means that the value 
measured at the sensor is smaller than the applied force. 

This is due to an intrinsic characteristic of the force sensor 
purchased from the manufacturer and must be corrected. 
Most likely the manufacturer calibrated the sensor with a 
gravity value different from g = 9.79 ± 0.01 m s-2. This value 
was used in Equation 14 to obtain G. Typical curves, F as a 
function of θ* for PTFE, are shown in Figure 5a, b, c, and d. 
The slope B* of the curves of Figure 5 was obtained by fitting 
a straight line to each of the curves when they showed linear 
behavior characteristic of an elastic regime. For each PTFE 
sample with different diameters (d1 = 5.00 mm; d2 = 6.50 mm; 
d3 = 8.00 mm and d4 = 10.85 mm), we determined the value 
of B*, measured by the FS and RMS, relative to the one 
measured of the curve as a function of the angular position. 
It should be noted that the ratio θ/θ* is 0.222 ± 0.001, so 
that B is calculated as B*/0.222. The B* value corresponds 
to the average of the three values found in the linear fit for 
each set of measurement considering the fixed diameter. 
Equation 14 was then used to calculate the value of G and 
Equation 15 to calculate σG. The correlation coefficient r 
was smaller for d1 = 5.00 mm, and its value is r = 0.969, the 
mean value of the three coefficients. As the diameter of the 
samples increased, it approached the value 1 (Figure 5a-d). 
A smaller correlation coefficient means that the experimental 
points are more dispersed in respect to the adjusted line, 
reflecting that the force applied, in this case, is very close 
to the resolution of the force sensor, which did not happen 
for the other samples with higher diameters.

Figure 6 shows the final results of G, which is expressed 
in MPa, for all the studied samples with different diameters. 
Using this method, the G value of the PTFE is close to the 
expected value[9,23]. The linear ratio L/d = 10.64 provides 
the same torsion modulus value for samples with different 
diameters, considering the error. Actual properties may 
change due to processing method, compound type, extruded 
dimensions, and other variables. For these reasons, there is 
in the literature a much more extensive range of values for 
the tensile modulus (E) of PTFE, from 0.4 to 1.6 GPa[9,23,35], 
whereas the values of G are more rare to find in the literature. 
Even if we consider that the relation G = E/2(1+υ), only 
valid for isotropic solids, is within the elastic region and 
can be used to evaluate G, we must resort to a Poisson 
ratio. However, the Poisson ratio at small strains was found 
to differ in tension[9] (~0.36) and compression[23] (~0.46). 

Figure 3. Images of PTFE by scanning electron microscopy (SEM): beam energy = 16.0 keV; vacuum of 10-3 Pa; magnifications of 
(a) 250 X, (b) 1000 X, and (c) 2000 X.

Figure 4. Results of exploratory differential calorimetry (DSC) of 
PTFE at 25°C and atmospheric pressure.
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Therefore, it was necessary to consider these two values 
of the Poisson ratio to compare with our values. Using the 
values of 0.36 and 0.46, the values evaluated for G are 
within the ranges that follow: 147 MPa < G < 588 MPa 
and 137 MPa < G < 548 MPa respectively. If we verify the 
obtained results (Figures 5 or 6) by the method proposed in 
this article, independent of the distinct values of the Poisson 
coefficient, they are contained within these calculated 
intervals. Also, some authors[37-39] report that depending on 
the applied strain for PTFE extrudates, the Poisson’s ratio 
could vary between −14 and 0. Therefore, the advantage 
of this technique lies in the fact that the Poisson’s ratio is 
not necessary. Taking advantage of the previous discussion, 
we verified that using the dynamic method[12], the values 
obtained for G are very close to those found with this 
technique. For samples with the diameters of 5.00, 6.50, 
and 8.00 mm used in this work, the following values were 

Figure 5. Typical curves of force F (N) as a function of the angular position θ* (rad). (a) Sample of PTFE: L = (53.20 ± 0.05) mm; 
d1 = (5.00 ± 0.05) mm; B* = 0.387 ± 0.006 N/rad; r= 0.969; G is calculated by Equation 14, G = (351 ± 15) MPa. (b) Sample of 
PTFE: L = (69.20 ± 0.05) mm; d2 = (6.50 ± 0.05) mm; B*= 0.856 ± 0.007 N/rad; r= 0.992; G = (354 ± 11) MPa. (c) Sample of 
PTFE: L = (85.15 ± 0.05) mm; d3 = (8.00 ± 0.05) mm; B*= 1.584 ± 0.008 N/rad; r= 0.997; G = (351 ± 9) MPa. (d) Sample of PTFE: 
L = (115.50 ± 0.05) mm; d4 = (10.85 ± 0.05) mm; B*= 3.98 ± 0.02 N/rad; r= 0.997; G = (354 ± 7) MPa.

Figure 6. Values of G obtained for the samples of PTFE for 
different diameters.

Table 1. Physical characteristics of extruded PTFE.
Material Density (kg m-3) ∆Hf (J g-1) DSC (% crist.) Tm (°C)

pure PTFE (extruded) 2156.3 ± 0.1 35.5 44 ± 1 330.6
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obtained: G = (352 ± 14) MPa, G = (354 ± 11) MPa, and 
G = (351 ± 9) MPa respectively. These values were obtained 
respecting the ratio L/d = 10.64. As it was not possible to 
perform the measurement with d4 = 10.85 mm, the dynamic 
method was limited to these three sample diameters. However, 
with the method applied in this article, it was possible to 
carry out the measurement of G for d4 = 10.85 mm. Further 
details of the dynamic method applied to polymers will be 
provided in the near future.

4. Conclusions

The system described herein is an alternative method to 
obtain G in polymers. It was applied to PTFE samples with 
different diameters with a fixed linear L/d ratio. The linear 
aspect ratio provided an approximate value of 350 MPa of G 
for all the PTFE samples and showed smaller deviations at 
higher diameters. Based on our results, the studied polymer 
showed values of G congruent with those of the literature, 
validating the use of the technique. In a competitive market, it 
is always interesting to know alternative methods to produce 
or find the parameters necessary for the development of 
products. Having been validated, the technique can now be 
applied to other types of materials, particularly those recently 
discovered, for which the Poisson’s ratio is not yet known.
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